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The unsteady problem of convective heat exchange of bodies of a arbitrary 

shape moving in a perfect fluid or of drops moving in a viscous incompressible 
liquid, is considered in the approximation of thermal boundary layer. 

The use of the concept of perfect fluid, i. e. of the small thickness of the viscous 
boundary layer in comparison with chracteristic dimensions of the body (or with the 

thickness of the thermal boundary layer at high P&let numbers) in the first case is 
justified, for example, in the case of liquid metals used as heat carriers in atomic 
reactors [I]. It is linked with that the chracteristic Prandtl number Pr = v/X (Y and 

X are coefficients of kinematic viscosity and thermal diffusivity) of liquid metals is 
contained in the interval 6.10-s - 10-z [l], and at high P&let numbers P = Pr 
R= aUX-r (V is the characteristic velocity of the body) the respective Reynolds 

number R is also high. 

The axisymmetric problem of unsteady 

convective diffu~on to the absorbing body was 
considered in [2] in the case of steady flow, 
and the similar problem was investigated in 
[3] on the assumption that the stream function 
q~ close to the body surface can be represent- 

ed in the form of two factors each of which 
depends only on time or coordinate, 

In the general case the expression for the 
stream function even in two-dimensionalprob- 

Fig, 1 
lems of heat exchange is not represented in 
the form of two coefficients {for instance, in 

the case of Stokes flow over a bubble, the superposition of an unsteady tra~lationaland 

of steady purely shear flows yields the expression * -+ (1. - 1) sin2 6 {K (t) -i- s/s * 
cos 0}, r ‘-t 1 [33, hence for solving this kind of problems it is necessary to have a more 
general method than proposed in [Z, 31. 

Assuming that the fluid flow field has been determined by solving the respective 
problem of hydrodynamic flow, we introduce the local orthogonal system of coordinates 

E, 9, h related to the body surface and the stream geometry, as was done in [3]. For 
this we determine the directions of unit vectors eE, en, eh at some point M near the 
particle. The nearest to M point M’ of the body determines the direction of unit 
vector et, and the segment 1 MM’ 1 defines the dimensionless coordinate E 
normalized with respect to a characteristic dimension of the body. The direction of 
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unit vector eq is defined by that of the projection of the fluid velocity vector at 
point M on the plane normal to et, and the unit vector eh is selected so that 
the system of vectors eE, e,,, eh forms an orthogonal trihedral (Fig. 1). 

We shall call leading (trailing) stagnation point, the point at which a particular 
streamline reaches the body in whose neighborhood the normal velocity component 
of the fluid is directed toward (away from) the surface, and refer to the streamline 
emanating from that point as the flow-on (flow-off) trajectory. We assume that in 
the stagnation point neighborhood local smoothing of coordinatesurfaces E = con& 
is provided and that all quantitites considered below have as many partial derivatives 
with respect to E fE # 0) as required. We draw ~r~gh point N of the flow-on 
trajectory the coordinate surface q = const , and in the tangent plane at point N 
we fix vector e,. The direction of the flow-on or flow-off trajectories and of 
this vector determines the coordinate surface h = 0 which is subsequently used as 

the reference plane. The parameter R is defined by the angle between e. and the 
vector of the normal to the coordinate surface h = const at point N (0 < h < 2 n). 
The coordinate 11 is determined by the length of arc of the intersection line of sur- 

face It = 0 and of the particle surface 5 = 0 measured from point N (Fig. 1). 
Xn such coordinate system the fluid velocity vector is at every point of the form 

v = {Vt;’ vq. 01 and has the following properties: 

E--f 0, VE = %0(l), 2$ = Vr10 + %0(l); VqO = Dri (E = 0) 

Note that unlike in the case of a steady flow field the directions of unit vectors 

e& ’ eqt en. and, also, the components of the metric tensor g,,, gss (grI I 1) are 

time dependent. 
The dimensionless equation of convective thermal conductivity in terms of the 

thermal boundary layer approximation in the system of coordinates &, rl, a is of the 

form [3] 

where OD = Q, (E, q, A, t) is the three-dimensional analog of the stream function 

[4] in which, in the case of steady hydrodynamics, a surface consisting entirely of 
streamlines corresponds to Q, = con& , Note that the coordinate h appears in Eq. 

(I} only as a parameter, hence it is henceforth omitted, 
In proximity of the body surface function @ can be represented, as 6 - 0) 

[43, in the form 
Q, = EQ P* rl) (2) 

Initial and boundary conditions for Eq. (l), (2) are, so far, not specified, and 
will be defined later. 

We introduce the variables 

0 = T/p Ef 0, rl), 5 = s (t, q) (3) 

where functions f and g satisfy the following system of equations in partial derivat- 
ives: 

Lf = -j+;r, L krl) = y=&, LC=fS (4) 
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Equation (l), (2) in variables (3), (4) reduces to the form 

a T/d 5 = aa T/&9 (5) 

and with the following initial and boundary conditions for temperature: 

T (w, 0) = T, (0); T (0, 5) = 0, T (co, 5) = 2 

has the solution 

(6) 

T (@,<I = 
m v’oo* s 25 e=p (- roa ;;*j I,,, (Tj T1 (o*) dw* (71 

0 

The boundary and initial conditions of the type (6) with T, (co) +: 1 appear, for 
example, in problems of thermal ~d~f~sion) interaction of several bodies in a fluid, 
when the concentration distribution in the heat trail region of the preceding body is 
defined by the expression T, (co) [4]. and the concentration distribution in the diffus- 
ion boundary layer is determined by formula (7). 

Let us now determine the expressions for the variables CO and 5. We integrate 
system (4) in variables n, u (t, q), where u (1, n) = C = const is the complete 
integral of the characteristic ordinary differential equation 

dt = v’; Wdq (8) 

that corresponds to operator L, i.e. Lu = 0. 
For the unknown functions f and 5 in variables rl and u we have 

where the expression in brackets is the partial derivative of In Sd (t, 11) (expressed in 
variables q ) with respect to rl, u; and au I all = x (q, u) defined in terms of 

the same variables. 
Successive integration of Eqs. (9) yields the general formula for the sought funct- 

ions f and 5 
ri 

f = A (u) S1E (q, u), E (q, 4 = e=P (In Q’x 4* 
(10) 

where rh and q- are some fixed values of the variable q, and A = A (u), B = 
B(u) are arbitrary functions of the variable u whose specific form is determined 

when the initial and boundary conditions are specified, as was done in [S]. 
In the self-similar case we have 

T = erf (ro/Zfg, TI (WI = t (11) 

The specific form of functions A (u) is unimportant. 
Representation (11) occurs, in particular, in the case of the following initial co- 

nditions: 
Ta (0, f, rl) = 1, 3”~ (0, 5, rl) = To (E, rl) ( 1‘4 
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of which the first cooresponds to the case when at t < 0 the stream temperature was 
constant and then at t = 0 heat exchange with the body surface saddenly begins, 
and tht: second to a steady heat exchange. Here and in what follows all quantities 
related to the first and second initial conditions (12) are denoted by subscripts a and 

B , respectively. 
For the heat fluxes in the self-similar case we have 

-- 

where o is the surface of the body. 
The variables of integration are defined as follows: 

(14) 

u;h 
to* = co (q = $1) (u), u) = s Wi)+,Q (0, rl*) a* 

n- 

where function 9 = u$-~) (u) is obtained by solving the equation uO = u. (q) = 
u (0, ?I for rl. 

As an example, we consider the plane problem of heat exchange of a cylinder 
over which flows at variable velocity U (t) = (1 + 2 t)-1 a perfect incompressible 
ikid. Inthiscase E=r-%,q=n-6, y/g=% ,and 

~2 (t, 0) = 2 (1 -j- 2 t)-1 sin e 

For the variables 5 and f we have (U = const is the first integral of system 
(8)) 

-1 ta= 2u [2 aretg u + 2u (1 + uz)-l - 6 - sin 01 

5, = 6, + 50* (U), I;o* (u) = 4 (1 + ua)-l 
f = 2 u-l sin e, u = 24 (t, e) = tg (e/2) (1 + 2 t) 

This shows that for considerable times the heat fluxes reach one and the same 
mode and approach zero at a rate proportional to tJ/t , while the stream velocity 
tends to zero in proportion to t-l. 
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